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Aeroelastic Analysis of a Flexible Control Surface with
Structural Nonlinearity

In Lee* and Seung-Ho Kimt
Korea Advanced Institute of Science and Technology, Taejon 305-701, Republic of Korea

This article is concerned with a time domain approach to the flutter analysis of a flight vehicle control surface
with concentrated nonlinearities. In this study, an elastic model of a control surface with root freeplay nonlinearity
in pitch is considered. A finite element structural model is used for structural analysis and a doublet lattice
unsteady aerodynamic model is used for the calculation of aerodynamic loads. In approximating the frequency
domain aerodynamic forces, the least-square rational function approximating method is used with an optimizing
algorithm. To transform the frequency domain aerodynamic forces to the time domain forces, the method of
Brace and Eversman is used. To reduce the problem size and the computation time, the fictitious mass modal
approach is used, which can afford the possible local change of structural properties. The effects of the initial
conditions and the magnitude of nonlinearity on the aeroelastic characteristics are examined. The aeroelastic
responses are sensitive to initial conditions. Limit cycle oscillation and chaotic motion are observed in this study.
The presence of freeplay makes the divergent flutter speeds larger than those of a linear case.

Nomenclature
[A] = aerodynamic approximation coefficient matrix
b = half-chord length
[C] = structural damping matrix
E = Young’s modulus
{F} = external force vector
f(a) = nonlinear elastic restoring force
[GK] = generalized stiffness matrix
[GM] = generalized mass matrix
[K] = stiffness matrix
K., = pitch spring stiffness
k = reduced frequency, wb/U.,

k,, = constant for aerodynamic approximation

{M] = mass matrix

[M;,] = fictitious mass matrix

[Q] = aerodynamic influence coefficient matrix

q = dynamic pressure

{R(u)} = elastic restoring force

s = freeplay angle

U. = freestream velocity

{u} = nodal displacement vector

Zpm = augmented states

o = pitch rotation angle

6(t) = Dirac delta function

P = density of air

[#,] = mode vector of basic system

[#,] = mode vector of fictitious mass model

| = transformation matrix of basic system

® = natural frequency in radian

w, = natural frequency of fictitious mass model in
radian

() = d()de

(") = d()de

Q) = generalized coordinate

) = amplitude of harmonic motion
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Subscripts

b = basic system

f = fictitious mass model
0 = initial condition

Introduction

OST aeroelastic analyses of an aircraft have been per-

formed under the assumption of aerodynamic and
structural linearity. The progress of the aeroelastic analysis
techniques and the computational capability enables us to
analyze the nonlinear characteristics. The nonlinearities in
aeroelastic analysis are divided into aerodynamic and struc-
tural properties. The causes of aerodynamic nonlinearity are
shock wave, viscosity, aerodynamic heating, turbulence, etc.
Structural nonlinearities are subdivided into distributed non-
linearities and concentrated ones. Distributed nonlinearities
are spread over the entire structure like material nonlinearity,
but concentrated nonlinearities act locally as in a control
mechanism or an attachment of external stores. Examples of
concentrated nonlinearities are freeplay, friction, hysteresis,
and preload. Concentrated structural nonlinearities are gen-
erated from a worn or loose hinge of the control surface, joint
slippage, and manufacturing tolerance. Since these nonlin-
earities are the function of the amplitude and the path of the
motion, the flutter speed and response characteristics are dif-
ferent from the linear case. The response of the nonlinear
aeroelastic system typically has four types of responses, i.e.,
1) the flutter, 2) divergence, 3) limit cycle oscillation, and 4)
chaotic motion. The flutter and divergence are unbounded
unstable motions with increasing amplitude, whereas the limit
cycle oscillation and the chaotic motion are bounded motion.
The limit cycle is a periodic oscillation consisting of a limited
number of frequencies and amplitudes. The chaotic motion
is a nonperiodic oscillation consisting of a multitude of fre-
quencies and amplitudes. Since the limit cycle oscillation and
the chaotic motion occur below the divergent flutter speed,
it is important to know the characteristics of the nonlinear
aeroelastic response in designing a flight vehicle.

The analysis methods of a nonlinear aeroelastic problem are
divided into a frequency domain approach and a time domain
approach. In a frequency domain approach, the describing func-
tion method' and asymptotic expansion method? are available.
These methods are convenient for the examination of the system
characteristics. However, these methods cannot give the de-
tailed motion characteristics because of the assumption of
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harmonic motion. A time domain method integrating the equa-
tions of motion can give the detailed motion characteristics.
Although a time domain approach is inconvenient for the in-
vestigation of the whole system characteristics, it is the only
possible method to examine the chaotic response. The present
study utilizes the time domain approach.

Time domain approaches to the nonlinear aeroelasticity
were performed in the 1950s using an analog computer by
Woolston et al.? to understand the nonlinear phenomena.
They analyzed the simple system including freeplay, hyster-
esis, and cubic nonlinearity. They dealt with a two-dimen-
sional model and Wagner’s indicial response function. They
showed that the limit cycle oscillation may occur below the
linear flutter boundary. MclIntosh et al.* made experimental
work with the wind-tunnel model of 2 degrees of freedom
(DOF). Lee® developed an iterative scheme for multiple non-
linearities using the describing function method and the struc-
tural dynamics modification technique. Yang and Zhao® stud-
ied the limit cycle oscillation of an airfoil with pitch nonlinearity
subject to incompressible flow using the Theodorsen function
that is correct for harmonic motion. They made a compre-
hensive study of limit cycle flutter. Zhao and Yang’ also stud-
ied the chaotic responses of an airfoil with cubic nonlinearity
in pitch subject to steady incompressible flow. Brase and
Eversman® developed the method of converting harmonic
aerodynamic force to a transient one using a linear super-
position principle. They analyzed the flutter characteristics of
a 2-DOF airfoil model and an 8-DOF F-18 stabilizer with
freeplay nonlinearities. For a normal mode approach, they
used a flexible mode inertially coupled with a rigid body mode.
They found that the divergent flutter speed of the nonlinear
system with freeplay is higher than that of the linear case,
depending on the initial conditions and the magnitude of free-
play, and found a jump response in a two-dimensional model
with a pitch freeplay model. Hauenstein et al.*"!* performed
an analytical and experimental study on the chaotic response
of aerosurface with pitch and plunge freeplay structural non-
linearities. They used a beam-rod finite element structural
model, two-dimensional aerodynamics, and a mode synthesis
method. They showed qualitatively good results between an-
alytical and experimental results. They concluded from the
results that the chaotic motions do not occur with the presence
of a single nonlinearity, but Price et al.'!-'? pointed out that
this is not true. They made a comprehensive aeroelastic study
of two-dimensional airfoil with pitch nonlinearities like free-
play, cubic, and bilinear stiffness.

Previous studies have mainly dealt with a simple or rigid
aerosurface. There are not enough studies for the flexible
aerosurface with nonlinearities and the general analysis method
was not properly established for such a nonlinear system. The
purpose of the present study is to analyze the aeroelastic
characteristics of the flexible control wing of a flight vehicle
with root freeplay nonlinearity. In this study, an elastic model
of the control surface with freeplay nonlinearity is examined.
Finite element plate model and doublet lattice unsteady aero-
dynamic model'* are combined for the calculation of the
aeroelastic response. In approximating the frequency domain
acrodynamic forces, Roger and Abel’s least-square rational
function approximating method' is used with optimizing al-
gorithm. To transform the frequency domain aerodynamic
forces to the time domain, the method of Brace and Eversman
is used. To reduce the problem size and the computation time,
Karpel’s fictitious mass (FM) modal approach's-'¢ is used,
which can afford the possible local change of stuffiness. The
effects of the initial conditions and the magnitude of nonlin-
earity on the aeroelastic characteristics are investigated.

Nonlinear Aeroelastic Analysis

FM Modal Approach

Generally, aeroelastic analysis is conducted in the gener-
alized modal coordinate to reduce the computation time and

memory requirement. In nonlinear aeroelastic problems,
structural properties are varying as the displacement changes.
Hence, using a constant normal mode from a fixed structural
model gives inaccurate results. To overcome this problem,
Karpel proposed the FM method.'>-'¢ In this method, a large
FM is added to the DOF of mass matrix where structural
change will occur. Then, the normal modes obtained from
the free vibration analysis for the system with FM are used
for the aeroelastic response. The basic idea of this method is
that the local deformation due to large mass enables us to
afford the structural changes.

Free vibration equation of motion of an n DOF system with
FMs is given as

(M + MRy + [KKu}b = {0} (1)

The FM M, is added to the DOF where structural change
occurs. The value of FM is large enough not to induce nu-
merical difficulty. Normal mode analysis for Eq. (1) gives a
set of n, low-frequency fictitious vibration mode [¢,]. Then
the generalized mass and stiffness matrix are given as

[GM,] = []TM + M,][¢/]
[GK./’] = [w/‘]z[GMf] = [¢/]7[K][¢/]

A coordinate transformation is then performed to clean out
the FMs and to form an actual basic case whose stiffness
matrix may differ from those of the nominal case by [AK,].
The transformation is based on the natural frequencies [w,]
and eigenvectors [x,] associated with the equation of free
undamped vibration in modal coordinates

(GM,] — (9" IMI¢IHE} + ((GK/]
+ (¢ 1TAK, ¢, Dig = {0} &)

The mode shapes calculated for the FM finite element model
are transformed to the basic case by

(6] = [¢/]lxs) 4)

@)

The basic case mode shapes [¢,] serve as a constant set of
structural generalized coordinates throughout the response
analysis.

Transient Aerodynamic Force

The linear relationship between the aerodynamic force act-
ing on the nodal point and the vertical displacement of the
nodal point is obtained as follows:

{F} = q[QKu} ©)

The structural displacement is transformed into modal co-
ordinate as follows:

{u} = [é,{u} (6)

Then, the generalized aerodynamic force can be written as

[F] = [$:)"TF#s] = qleu]"1QlIdslut = q[QNu}  (7)

Generally, unsteady aerodynamic influence coefficient ma-
trix is calculated for discrete reduced frequency k rather than
calculated as a continuous function of the circular frequency
w. Thus, the aerodynamic influence coefficient matrices should
be approximated as a rational function. There are many meth-
ods of rational function approximation, but Roger and Abel’s
method!#is used here for simplicity and fast computation time.
The approximation form is as follows:

QW) = (4] + (4,160 + [ + 3 el

(8)
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Fig. 1 Freeplay nonlinearity.

Here, A, are calculated from least-square fit. &, are constants
to be determined for best fit. Simplex direct search method*’
is used to determine k,, for minimizing fitting error.

Transient aerodynamic force of an arbitrary wing motion
can be written as follows:

F@©) = q ([AJ + S ) uo) + aln) (&) ao
+ qlA;] (5;) u) - g 2:14 [A]Pmzm ®
where
pm = <7Jb_> k'n’ E'" = J;: E(T)eipm(lkf) dT
{v} —[M €] ~[M][K] —[M] A
{u} /] [0] [0]
{5'4} = [0] ] —pdl] (0]
: : : [0] )
{Zpsh (0] (] [0]

Equation of motion for aeroelastic system with concen-
trated structural nonlinearity is written as follows:
(M)} + [CHup + {R(w)} = {F} (10)

where {R(u)} is elastic restoring force vector that is a function

of displacement. For piecewise nonlinearity, restoring force
can be written as follows:

R} = [KJ{u} + {f(a)} (1D

where [K] is a linear stiffness matrix without freeplay, and
{f(a)} is the restoring force vector whose elements are zero
except for nonlinear element. For freeplay nonlinearity shown
in Fig. 1, {f(«)} is given as follows:

Kf(a —5), a>s
{f(a)} = 0, ~s<a<s (12)
K(a +5), a< —s

The transformation of Eq. (10) into the modal coordinate
(tu} = [dyH{u}) gives
[GM){a} + [GCHa} + {GR(w); = [F]  (13)

where the generalized mass, damping matrix, and restoring
force vector are as follows:

(GM] = {6} TMKs},  [GC] = {¢:}ICK,} (14)
[GR(u)} = [GKHu} + {$,}{f(a)}

Let us define the state variable and matrices as follows:

W = (@ (150
W = @ (130)

= tom - q(2) 140 a5
€1 = 1661 - o (&) 142 (150
[K] = [GK] - ¢lA] (15¢)
(Al = aplA.] (131

[ = (4] + 3 [4,] (150)

Rearranging the previous formulas, Eq. (13) can be written
as

My} = —[CKy} — [KHu} — {&,}{f(a)}

+ 2 [A Nz}

m=4

(16)

zm(t) = E(t) - pmgm(t)v gm(o) =0 (17)

Combining Eqs. (16) and (17), we get the final state—space
equation as follows:

— M) Ayl [ (o ()}
[0] {u} i {0}
[0] zd | -1 (18)
—pusll] {Zaea {0}

The number of equations in Eq. (18)is (2 + M) X N(M =
number of simple pole, N = number of normal mode). In-
tegrating Eq. (18) gives the time response for a nonlinear
system. Here, the 5—6th-order Runge—Kutta—Verner algo-
rithm is used for the adaptive integration step.

Results and Discussion

As a numerical example, a control fin-type flexible wing is
used for nonlinear aeroelastic analysis. The model configu-
ration is given in Fig. 2. The specification of the model is as
follows:

Material: aluminum (E = 72.4 GPa, G = 26.2 GPa, p =
2713 kg/m?

16 eight-node isoparametric finite element mesh (4 x 4)

49 doublet lattice aerodynamic mesh (7 X 7)

Mach number M = 0

Nonlinear spring at the root hinge (pitch DOF): k, = 120
Nm/rad

Root chord thickness = 3 mm

Tip chord thickness = 1.5 mm

Free Vibration Analysis

The results for free vibration analysis are presented in Table
1. Comparison has been made between the results of the direct
model and the FM model. The direct model has two types of
spring constant. The first model has a torsional spring (k, =
120 Nm/rad) at the rotational axis. The second type has a
zero spring, which has a rigid body mode corresponding to
zero natural frequency (the first mode). The results of the
direct model with a spring (k, = 120 Nm/rad) was obtained
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Table 1 Natural frequencies of contrel fin for various
computation conditions®

Direct model

Mode k., = 120 Nm/rad k, = 0 Nm/rad FM model
1 77.0538 0 77.0538
2 131.9821 100.8044 132.1264
3 391.6683 391.0574 391.6763
4 450.1578 434.0840 450.5857
5 700.9876 700.4392 700.9638
6 957.5791 949.0727 2745.346
“Unit = Hz.
(Unit :mm)
(0.0) -y
2_/@ Root (78, 150)
torsional
spring
(156,0) (156, 150)
XY

Fig. 2 Model configuration.
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Fig. 3 Time responses of the free oscillation (a, = 1 deg): s/a, = a)
0.0 and b) 0.5.

by the finite element model without using any FM. The results
of an FM model are obtained by using the FM of 50,000
multiple of the corresponding inertia at the rotational axis.
Natural frequencies of the FM model are in a good agreement
with those of the direct model except the sixth mode. The
sixth natural frequency of FM model is large because the large
FM model causes local distortion.

The time response of the free oscillation for the system in
Fig. 2 is given in Fig. 3. Here, four (2 X 2) eight-node ele-

Table 2 Comparison of flutter speeds between various methods

Flutter speed,  Flutter frequency,  Reduced
Method m/s Hz frequency
V-g 140.5 113.6 0.397
Time (direct) 141.0 114.0 _
Time (FM) 141.0 114.0 —_—
Time (nominal) 168.0 — —_—
0.25
Direct
° Fictitious moss
o
D
s f
5 A A ﬁ ﬂ A A f
g 0 VV U % V V % $
o
: vV
L2
o
-0.25 L
0 0.05 0.1
a) Time (sec)
0.008
——  Direct
Fictitious mass
E
€
o
£ 0
I
O
S]
a
2}
2
-0.008 .
0 0.05 0.1
b) Time (sec)
Fig. 4 Time responses of the linear model (U, = 140 m/s, initial

condition = 0.001 X the amplitude of the first mode): a) root pitch
angle history and b) tip displacement history.

ments were used for time simulation. The initial condition is
a rigid pitch rotation of 1 deg. Figure 3a shows the displace-
ments of the root leading edge for the linear system (s/et, =
0). In this case, the results of the FM are completely corre-
sponding to those of the full simulation. The full simulation
is obtained from the direct model without using the FM. The
results of the FM are obtained by using eight modes. There-
fore, a tremendous computation time has been saved com-
pared with the full simulation, which has 63 DOF. Figure 3b
shows the results for the nonlinear system with the gap/am-
plitude ratio of 0.5 (s/a, = 0.5). The results of the FM are
reasonably accurate and the entire wave forms by the FM
method are very close to those of the full simulation.

Linear Flutter Analysis

To verify the computational scheme and program, a linear
flutter analysis for a system given in Fig. 2 is performed. The
spring coefficient at the root of the wing is 120 Nm/rad. From
the mode convergency test, it was known that six lowest modes
gave accurate results. The results are given in Table 2. V-g
in Table 2 means the traditional V-g method. Time (direct)
in Table 2 means the time integration method for the direct
model. The direct model uses mode shapes of the direct model
with linear spring, which gives the correct and accurate results.
Time (nominal) is the result obtained by using the modes of
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the direct linear model without spring. Time (FM) is the result
obtained by using mode shapes of the FM model without
spring. In the nominal and the FM model, the spring stiffness
is added by modal coupling during the time integration. The
results of the FM model are in a good agreement with those
of the direct model and the V-g method. The nominal model
has a large error compared with other methods. To demon-
strate the accuracy of the FM model, a time history of flutter
results is shown in Fig. 4. Figure 4a shows the time history
of the pitch angle at the wing root and Fig. 4b shows the time
history of the displacement at the root leading edge. The
results of the FM model are very accurate compared with
those of the direct model. Therefore, the FM model gives
very accurate results when only six modes are used. Hence,
the effect of the local stiffness changes due to nonlinear free-
play can be accurately calculated by the FM method.

Nonlinear Flutter Analysis

The flutter analysis of the nonlinear model with a root pitch
freeplay nonlinearity has been investigated. In the nonlinear
flutter analysis, the responses are very sensitive to the initial
conditions. Thus, the effect of the initial conditions and the
freeplay quantity on the aeroelastic response are examined.
The computational results for the system of Fig. 2 are given
in Figs. 5-10. The initial condition is a rigid pitch angle of
0.1 deg. The pitch angle of the root axis is selected for motion
characteristics for convenience. The representative responses

°
-
=]

U. = 135 m/s

4
o
15

~~

ap

)

o

N

L

EP 0.00 i
©

N

G 005
- |
-

a8

1 L 1 ] A A 1 1

0.2 0.4 0.8 0.8 ‘ 1.0
Time (sec)

0.10
U. = 140 m/s

ol
=3
5

Pitch angle (deg)
(=)

~0184 Y —" Y. 0.8 1.0
Time (sec)

U. = 145 m/s

°

23

=]
T

o

-

=)
T

Pitch angle (deg)
8

-0.10 -
-0.20
0.3 " 1 . ) . L " i PR
8.0 0.2 0.4 0.8 0.8 1.0

Time (sec)

Fig. 5 Time responses of the linear model for various velocities
(slay = 0).

for the root pitch angle are dependent on the gap/amplitude
ratio, i.e., the freeplay angle to the initial pitch angle. In these
figures, the flutter is defined as a divergent oscillation. The
chaotic motion means a bounded random-like motion includ-
ing continual jump behavior. The limit cycle oscillation means
a bounded motion consisting of limited number of cycles and
amplitudes.

Figure 5 shows the time response of the linear case (s/e
= 0). When the flow velocity is 135 m/s, the response is
damped out as time proceeds. A nearly harmonic oscillation
reaches 140 m/s. The divergent oscillation occurs at 145 m/s.
The flutter speed can be defined as the speed slightly higher
than 140 m/s. The overall feature of the response is monot-
onous in this linear case.

Figure 6 represents the time response of the nonlinear case
(s/ay, = 0.05). In this case, the limit cycle oscillation is the
dominant feature. A typical limit cycle oscillation occurs at
130 m/s. The describing function technique can be applied in
this region. The response approaches to a limit cycle oscil-
lation at the speed of 135 m/s. Near the speed of 140 m/s, the
motion diverges.

Figure 7 illustrates the time response of the nonlinear case
of the gap/amplitude ratio (s/a, = 0.2). In this gap/amplitude
ratio, the chaotic behavior is observed instead of the limit
cycle oscillation. In this case the equivalent stiffness approach
based on the describing function cannot be applied. At the
speed of 140 and 145 m/s, the motion is limited inside of the
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Fig. 6 Time responses of the nonlinear model for various velocities
(s/ay, = 0.05).



LEE AND KIM 873

0.10
U. = 140 m/s

Pitch angle (deg)
. (=] o
s 8 B

0.0 0.2 ' 0.4 0.8 0.8 1.0
Time (sec)

0.10

U. = 145 m/s

o
<)
o

Pitch angle (deg)
& °
& 8

1 L i

—0185 oz E— BT
Time (sec)

o
-
(=1

U. = 150 m/s

A i |
W W b

©
=
&

-0.05

Pitch angle (deg)
o
8

_ " ) I " 1
0'18,0 0.2 0.4 0. 0.8 1.0

8
Time (sec)

w
<}
o

U. = 155 m/s

:Av.v.,.TAvAvAvAVAVAVAVA/\/\/\ \P\l I\M\MMM[\AM
AR

=
=3
=]

-1.00

Pitch angle (deg)
o

_2.08 L 1 s !

0 0.1 0.2 0.3
Time (sec)

Fig. 7 Time responses of the nonlinear meodel for various velocities
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freeplay angle. Here, the freeplay angle is +0.02 deg. The
jump phenomenon is observed at 150 m/s. In this study, a
continual jump motion is classified as the chaotic motion. The
presence of chaotic motion around the two corners of freeplay
nonlinearity is observed. The abrupt divergent motion occurs
at 155 m/s.

Figure 8 shows the time response of the nonlinear case of
the gap/amplitude ratio (s/a, = 1.0). In this case, the freeplay
angle is the same as the initial pitch angle. As the flow speed
increases, the jump phenomenon occurs more frequently. The
motions are bounded by the freeplay nonlinearity. The chaotic
response is observed for broad velocity band.

Figure 9 describes a parameter map for velocity vs gap/
amplitude ratio. All results were obtained when the motion
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Fig. 8 Time responses of the nonlinear model for various velocities

(s/ay = 1.0).
Divergent flutter
E Chaotic motion
B Limit cycle oscillation
[l Damped stable motion
180 '7/ i
170 Z
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Velocity %
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140 ] %
130
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0 010203040506070809 1 1.1
Gap/Amplitude ratio
Fig. 9 Parameter map of air speed vs gap/amplitude ratio.

is considered to be settled down. Sustained small oscillations
are classified as damped stable motion. For high gap/ampli-
tude ratios (small initial exitation), a wide range of chaotic
behavior is observed. Divergent flutter occurs abruptly after
the chaotic motion. When the gap/amplitude ratio becomes
higher than 0.6, the motion characteristics are alike. Limit
cycle oscillation is observed at the low gap/amplitude ratio (s/
a, = 0.1).
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Fig. 10 Divergent flutter speeds of the linear and nonlinear model.

Figure 10 shows the divergent flutter speeds for various
gap/amplitude ratios. When the gap/amplitude ratio becomes
small, the flutter speed approaches that of the linear case. As
the gap/amplitude ratio increases, the flutter speed becomes
much higher than that of the linear case.

These results are obtained for a fixed initial angle of attack
and variable freeplay quantity. The variable parameter could
be an angle of attack with a fixed pitch freeplay quantity.
However, these results could be obtained by reinterpreting
Figs. 5-10.

Conclusions

The present study dealt with the time domain aeroelastic
analysis for a control surface with concentrated structural non-
linearity. The method used in this study can be applied to the
arbitrarily shaped wing with multiple nonlinearities. A typical
flexible control surface with a single root pitch freeplay is
selected for numerical simulation. The free vibration analysis
and the linear flutter analysis results show the validity of this
method. The FM method is well applied to the system with
concentrated nonlinearity and gives accurate results. This
method can save a tremendous amount of computation time
when a few number of modes are used for the nonlinear flutter
analysis.

Nonlinear flutter analysis shows that the responses are very
sensitive to the amount of the freeplay quantity. The limit
cycle oscillations are observed at low gap/amplitude ratios.
The chaotic motions are observed for large gap/amplitude
ratios. As the gap/amplitude ratio increases, the flutter speed
of the nonlinear system becomes higher than that of the linear
case.
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